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Introduction to numerical relativity



• My brief overview of general relativity 
 
• Numerical relativity in vacuum and non-vacuum 
spacetimes

• Hands on codes

Plan of the lectures



• Einstein  started  to  think  of  the  path  of  an  object  as  a  property  of 
spacetime itself, rather than being related with the specific properties of the 
object. 

• The idea is that gravity is a manifestation of the fact that objects in free fall 
follow  geodesics, in curved spacetimes.

• We know in our ordinary experience (flat spacetime) that in the absence of 
any forces, objects follow straight lines, and we also know that straight lines 
are the shortest possible paths that connect two points in such conditions. 

• The generalisation of the notion of a “straight line” valid also in curved 
spacetimes is called geodesic.

My brief overview of general relativity



 Important quantities in general relativity: 

• the metric (the metric tensor g), which may be regarded as a machinery for measuring 
distances:
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• curvature, expressed by the Riemann curvature tensor

      (where                                                                                are the Christoffel symbols)

• the Einstein tensor: Gµ⌫ = Rµ⌫ � 1

2
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My brief overview of general relativity



"Geometry tells matter how to move”

"Matter tells spacetime how to curve"

My brief overview of general relativity

John Archibald Wheeler’s famous summary of general relativity:



"Geometry tells matter how to move”, namely the geodetic equation:  
 
 
 
 

 If we know the geometry of spacetime we can compute the paths of matter particles
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My brief overview of general relativity



•"Matter tells spacetime how to curve"
• The distribution of matter (mass/energy/momentum) determines the spacetime geometry

• Matter distribution is covariantly described through the stress-energy tensor T, which is 
symmetric and whose (covariant) divergence vanishes (more later)

• Spacetime geometry is described through the metric g and its derivatives up to second order

• Einstein reached a satisfactory form for the equations relating geometry and matter:

Einstein_tensor = constant x T

• The Einstein tensor G is a tensor in 4D spacetime that has the wanted properties of:

• containing the metric up to second derivatives 

• being a symmetric tensor (it must because the stress-energy tensor is symmetric)

• having vanishing (covariant) divergence (it must because the stress-energy tensor has 
vanishing divergence)

• the weak-field limit of the Einstein equations gives the Newtonian Poisson equation (from the 
comparison to which the value of the above constant is found)

My brief overview of general relativity



i.e. 
q six, second-order-in-time, second-order-in-space, coupled, highly-
nonlinear, quasi-hyperbolic, partial differential equations (PDEs)  
q four, second-order-in-space, coupled, highly-nonlinear, elliptic PDEs 

The fundamental equations
The Einstein equations:

Matter and other 
fields

Curvature scalar

Metric 
(measure of spacetime distances)

Einstein 
tensor 

(spacetime)

Rest-mass density Internal energy density Pressure

4-velocity

Ricci tensor



Numerical relativity



o Binary neutron stars

o Binary black holes

o Deformed compact stars

o Mixed binary systems 

o Gravitational collapse 
(supernovae, neutron stars)

Some gravitational-wave sources



Gravitational-wave templates for detectors
Kagra - Kamioka         GEO-Hannover        LIGO-Livingston        LIGO-Hanford         VIRGO-Cascina

post-Newtonian 
expansions

Perturbative 
analysis

Numerical 
relativity

h

Knowledge of the 
waveforms can  
compensate for the 
very small S/N 
(matched-filtering) and 
so enhance detection 
and improve source- 
characterisation.

Detectors measure  ΔL/L ~ h < 10-21 with S/N~1.



Solving the Einstein equations on computers

General relativity states that our World is a 4D curved  spacetime 
and the Einstein equations describe its dynamics.

How to solve the Einstein equations numerically?

Prominently, there is no a priori concept of “flowing of time” (we are 
not involved in thermodynamics here), time is just one of the 
dimensions, and on the same level as space dimensions...

There is a successful recipe, though.



First step: foliate the 4D spacetime
We have the illusion to live in 3D and it is easier to tell computers to 
perform simulations (time-)step by (time-)step.

Also assign a normalization
such that

Define therefore:

So, given a manifold      describing a spacetime with 4-metric       
we want to foliate it via space-like, three-dimensional 
hypersurfaces:                 . We label such hypersurfaces with the 
time coordinate t.

(“the direction of time”)

(As mostly done in numerical relativity, the signature is here -+++)

The function    is called the ”lapse” function and it 
is strictly positive for spacelike hypersurfaces:

↵



so that

ii) and the spatial metric

Let’s also define:

i) the unit normal vector to the hypersurface



The spatial part is obtained by contracting with the spatial 
projection operator, defined as

By using               we can decompose any 4D tensor into a 
purely spatial part (hence in   ) and a purely timelike part (hence 
orthogonal to    and aligned with   ).

while the timelike part is obtained by contracting with the timelike 
projection operator:

The two projectors are obviously orthogonal:

Second step: decompose 4D tensors



The 3D covariant derivative of a spatial tensor is then defined as 
the projection on    of all the indices of the the 4D covariant 
derivative:

All the 4D tensors in the Einstein equations can be projected 
straightforwardly onto the 3D spatial slice. 
In particular,  the 3D Christoffel symbols:

the 3D Riemann tensor:

and the 3D contractions of the 3D Riemann tensor, i.e. the 3D 
Ricci tensor the 3D Ricci scalar :                           and              .



The extrinsic curvature is defined in terms of the unit 
normal to    as:

where       is the Lie derivative along    . 

This also expresses the fact that the extrinsic curvature can be 
seen as the rate of change of the spatial metric.

and this can be shown to be equivalent also to: 

The information present in the 4D Riemann tensor and absent in 
the 3D Riemann tensor can be found in another spatial tensor: the 
extrinsic curvature, which describes how the 3D hypersurface is 
embedded (“bent”) in the 4D manifold.



Properties of the Lie derivative
Recall that the Lie derivative can be thought of as a geometrical 
generalization of a directional derivative. It evaluates the change of a 
tensor field along the flow of a vector field.
For a scalar function    this is given by:

For a vector field     , this is given by the commutator:

For a 1-form     ,this is given by:

As a result, for a generic tensor of rank       this is given by:
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Consider a vector at one position     and then parallel-
transport it to a new location            .

The difference in the two vectors is proportional to the 
extrinsic curvature and this can either be positive or negative.

P
P + �P

The extrinsic curvature measures the gradients of the normal 
vectors     and, since these are normalized, they can only differ in 
direction. Thus the extrinsic curvature provides information on how 
much the normal direction changes from point to point and so on 
how the hypersurface is deformed.

parallel 
transport 

Hence it measures how the 3D 
hypersurface is “bent” with 
respect to the 4D spacetime.



Third step: decompose the Einstein equations
Next, we need to decompose the Einstein equations in the spatial 
and timelike parts. 

To this purpose it is useful to derive a few identities.

Gauss equations: decompose the 4D Riemann tensor               
projecting all indices:

Codazzi equations: take 3 spatial projections and a timelike one:



Ricci equations: take 2 spatial projections and 2 timelike ones:

Another important identity which will be used in the following is 

and which holds for any spatial vector    .



Let’s define the double timelike projection of the stress-energy 
tensor as:

We must also consider the projections of the stress-energy 
tensor (the right-hand-side of the Einstein equations).

Similarly, the momentum density (i.e. the mass current) will be given 
by the mixed time and spatial projection:

And similarly for the space-space projection.

jµ = ���
µn

⇥T�⇥



With all these formulas, we can decompose the Einstein 
equations in the 3+1 splitting.

We get two sets of equations:

1) the “constraint” equations, which are fully defined on each 
spatial hypersurfaces (and do not involve time derivatives)  

2) the “evolution” equations, which instead relate quantities 
(the spatial metric and the extrinsic curvature) between two 
adjacent hypersurfaces. 



We first time-project twice the left-hand-side of the Einstein 
equations to obtain 

The constraint equations (I)

Doing the same for the right-hand-side, using the Gauss 
equations contracted twice with the spatial metric and the 
definition of the energy density we finally reach the form of the 
equation, which is called Hamiltonian constraint equation

Note that this is a single elliptic equation (not containing time 
derivatives), which should be satisfied everywhere on the spatial 
hypersurface   .



Similarly, with a mixed time-space projection of the left-hand-
side of the Einstein equations we obtain 

The constraint equations (II)

Doing the same for the right-hand-side, using the contracted 
Codazzi equations and the definition of the momentum density, 
we reach the equations called the momentum constraint 
equations

which are also 3 elliptic equations. 
The 4 constraint equations are the necessary and sufficient 
integrability conditions for the embedding of the spacelike 
hypersurfaces                    in the 4D spacetime               .



We must ensure that when going from one hypersurface     at time  
to another      at time            all the vectors originating on      end 
up on     : we must land on a single hypersurface.

t+ �t
t⌃1

⌃2 ⌃1

⌃2

The most general of such 
vectors that connect two 
hypersurfaces is 

where     is any spatial “shift” 
vector. Indeed we see that

so that the change in   along     is                          and so it is the 
same for all points, which consequently end up all on the same 
hypersurface.

t tµ �t = tµrµt = 1

Find the direction for evolutions



With this definition we can revise the Lie derivative along the unit 
normal      . Since

the definition of the extrinsic curvature:
can now be rewritten as 

The evolution part of the Einstein equations



The evolution part of the Einstein equations

We can now express the last piece of the 3+1 decomposition and 
so derive the evolution part of the Einstein equations.

As for the constraints, we need suitable projections of the two sides 
of the Einstein equations and in particular the two spatial ones: 

Using the Ricci equations one then obtains:

where             .



Fourth step: select a coordinate basis

In the spirit of the 3+1 formalism, the natural choice for the 
coordinate unit vectors     is:

i) three purely spatial coordinates with unit vectors:

So far the treatment has been coordinate independent, but in order 
to write computer programs we have to specify a coordinate basis. 
Doing so can also be useful to simplify equations and to highlight 
the “spatial” nature of    and    .

ii) one coordinate unit vector along the vector   :



As a result:

i.e.  the Lie derivative along    is a simple partial derivative

i.e.  the space covariant components of a timelike vector are 
zero; only the time component is different from zero

i.e.  the zeroth contravariant component of a spacelike vector 
are zero; only the space components are nonzero

Putting things together and bearing in mind that                   :



Recalling that the spatial components of the 4D metric 
are the components of the 3D metric (              ) and 
that              (true in general, for any spatial tensor), the 
contravariant components of the metric                        
in a 3+1 split are

Similarly, since             , the covariant components are 

Note that                      (i.e.            are inverses) and thus they 
can be used to raise/lower the indices of spatial tensors. 

gij = �ij

�↵0 = 0
gµ� = �µ� � nµn�



We can now have a more intuitive interpretation of the lapse, 
shift and spatial metric. Using the expression for the 4D covariant 
metric, the line element is given by

It is now clearer that:
•the lapse measures proper time 
between two adjacent hypersurfaces

•the shift relates spatial coordinates 
between two adjacent hypersurfaces

•the spatial metric measures distances between points on 
every hypersurface



Summary of the idea of  
the 3+1 or ADM (Arnowitt Deser Misner) formulation

First step: foliate the 4D spacetime in 3D spacelike hypersurfaces 
leveled by a scalar function: the time coordinate. This determines 
a normal unit vector to the hypersurfaces.

Second step: decompose 4D spacetime tensors in spatial and 
timelike parts using the normal vector and the spatial metric.

Third step: rewrite Einstein equations using such decomposed 
tensors, also selecting two functions, the lapse and the shift, that tell how 
to relate coordinates between two slices: the lapse measures the proper 
time, while the shift measures changes in the spatial coordinates.

Fourth step: select a coordinate basis and express all equations 
in 3+1 form.



NOTE: the lapse, and shift are not solutions of the Einstein 
equations but represent our “gauge freedom”, namely the 
freedom (arbitrariness) in which we choose to foliate the 
spacetime. 

Any prescribed choice for the lapse is usually referred to as a 
”slicing condition”, while any choice for the shift is usually 
referred to as ”spatial gauge condition”.

While there are infinite possible choices, not all of them are 
equally useful to carry out numerical simulations. Indeed, 
there is a whole branch of numerical relativity that is 
dedicated to finding suitable gauge conditions. 

Gauge conditions



Different recipes for selecting lapse and shift are possible:

i) make a guess (i.e. prescribe a functional form) for the lapse, 
and shift: e.g. geodesic slicing 

obviously not a good idea



Choosing the right temporal gauge  
Suppose you want to follow the gravitational 
collapse to a black hole and assume a simplistic 
gauge choice (geodesic slicing):

 That would lead to a code crash as soon as a 
singularity forms.

One needs to use smarter temporal gauges.
In particular we want time to progress at 
different rates at different positions in the grid: 
“singularity avoiding slicing” (e.g. maximal slicing).

� = �(t,x), ⇥i = ⇥i(t,x)



Good idea mathematically, but unfortunately this leads to elliptic 
equations which are computationally too expensive to solve at 
each time.

ii) fix the lapse, and shift by requiring they satisfy some condition: 
e.g. maximal slicing for the lapse 

which has the desired “singularity-avoiding” properties.

Different recipes for selecting lapse and shift are possible:

i) make a guess (i.e. prescribe a functional form) for the lapse, 
and shift: e.g. geodesic slicing 

obviously not a good idea



iii) determine the lapse, and shift dynamically by requiring that 
they satisfy comparatively simple evolution equations.

This is the common solution. The advantage is that the 
equations for the lapse and shift are simple time evolution 
equations. 

A family of slicing conditions that works very well to obtain 
both a strongly hyperbolic evolution equations and stable 
numerical evolutions is the Bona-Masso slicing:

where                        and        is a positive but otherwise 
arbitrary function. 



Choosing the right spatial gauge (i.e. β(xμ) ) 

A high value of the metr ic 
components means that the 
distance between numerical grid 
points is actually large and this 
causes problems. 

In addition, large gradients my pose 
a numerical problem.  

Choosing a “bad” shift may even 
lead to coordinates singularities.



where                and    acts as a restoring force to avoid large 
oscillations in the shift and the driver tends to keep the 
Gammas constant.

A popular choice for the shift is the hyperbolic “Gamma-driver” 
condition.

Overall, the “1+log” slicing condition and the “Gamma-
driver” shift condition are the most widely used both in 
vacuum and non-vacuum spacetimes.

Bi ⌘ ⇥t�
i



In practice, the ADM equations are essentially 
never used!

The ADM equations are perfectly all right mathematically but 
not in a form that is well suited for numerical implementation. 

Indeed the system can be shown to be weakly hyperbolic 
(namely, its set of eigenvectors is not complete) and hence “ill-
posed” (namely, as time progresses, some norm of the solution 
grows more than exponentially in time).

In practice, numerical instabilities rapidly appear that destroy 
the solution exponentially.

However, the stability properties of numerical implementations 
can be improved by introducing certain new auxiliary functions 
and rewriting the ADM equations in terms of these functions.



Instead, we would like to have only terms of the type  

In this equation there are mixed second derivatives, since      
contains mixed derivatives in addition to a Laplace operator 
acting on     .

Think of the above system as a second-order system for     . 

because without the mixed derivatives the 3+1 ADM 
equations could be written in a such way that they behave 
like a wave equation for     . 

Let’s inspect the 3+1 evolution equations again:

�ij

@µ@µ�ij



We care to have wave equations, like

because wave equations are manifestly hyperbolic and 
mathematical theorems guarantee the existence and 
uniqueness of the solutions (as seen in previous lectures of 
this school). 

We can make the equations manifestly hyperbolic in 
different ways, including:

i) using a clever specific gauge;
ii) introducing new variables, which follow additional equations 
(imposed by the original system). 

These methods aim at removing the mixed-derivative term.



Let choose a clever gauge that makes the ADM equations 
strongly hyperbolic.

Generalized Harmonic Coordinate (GHC) 
formulation

The generalized harmonic formulation is based on a 
generalization of the harmonic coordinates:

When such condition is enforced in the Einstein equations, 
the principal part of the equations for each metric element 
becomes a scalar wave equation, with all nonlinearities and 
couplings between the equations relegated to lower order 
terms. 



where the       are a set of source functions.

The       and the equations for their evolution must be suitably 
chosen.

The harmonic condition                is known to suffer from 
pathologies. 
However, alternatives can be found that do not suffer from 
such pathologies and still have the desired properties of the 
harmonic formulation. In particular,  the generalized harmonic 
coordinates have the form:



    : conformal factor  
    : conformal 3-metric 
    : trace of extrinsic curvature
     : trace-free conformal   
extrinsic curvature 
      :“Gammas” 

�
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New evolution variables are introduced to obtain from the 
ADM system a set of equations that is strongly hyperbolic.
A successful set of new evolution variables is:

The second method: introducing new variables
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Dt�̃i = �2Ãij�j� + 2�
�
�̃i
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Dt ⇥ �t � L�where                         

These equations are also known as the BSSN-NOK equations or as the 
conformal traceless formulation of the Einstein equations.

And the ADM equations are then rewritten as:



Although not self evident, the BSSN-NOK equations are 
strongly hyperbolic with a structure which is resembling the 
1st-order in time, 2nd-order in space formulation

scalar wave equation

conformal traceless 
formulation

The BSSN-NOK equations are nowadays the most widely 
used form of the Einstein equations and have demonstrated 
to lead to stable and accurate evolution of vacuum (binary--
black-holes) and non-vacuum (neutron-stars) spacetimes.



In addition to the (6+6+3+1+1=17) hyperbolic evolution equations 
to be solved from one time slice to the next, there are the usual 
3+1=4 elliptic constraint equations:

and 5 additional constraints are introduced by the new variables:

NOTE: most often these equations are not solved but only monitored to verify that

Constraints of  BSSN-NOK



Extraction of gravitational waves



Wave-extraction techniques
Computing the waveforms is the ultimate goal of a large 
portion of numerical relativity.
There are several ways of extracting GWs from numerical 
relativity codes, the most widely used of which are:

Both are based of finding some 
gauge invariant quantities or the 
perturbations of some gauge-
invariant quantity, and to relate 
them to the gravitational 
waveform.

•Weyl scalars (a set of five complex scalar quantities, describing the curvature of a 4D spacetime)

•perturbative matching to a Schwarzschild background



In p ract i ce , the ac tua l 
e x c i s i o n r e g i o n i s a 
“legosphere” (black region) and 
is placed well inside the 
apparent horizon (which is 
found at every time step) and 
is allowed to move on the grid.

Excising parts of the spacetime with singularities
apparent horizon

The region of spacetime inside a horizon 
(yellow region) is causally disconnected 
from the outside (blue region).

So a region inside a horizon may be 
excised from the numerical domain.  

This is successfully done in pure 
spacetime evolutions since the work 
of Nadëzhin Novikov Polnarev (1978).  

Baiotti et al. [PRD 71, 104006, 
(2005)] and other groups [Duez et al., 
PRD 69, 104016 (2004)] have shown 
that it can be done also in non-vacuum 
simulations.



Excising parts of the spacetime with 
singularities: 

the moving-puncture method

There is an alternative to explicit excision. Proposed independently by Campanelli et 
al., PRL96, 111101 (2006) and Baker et al., PRL96, 111102 (2006), it is nowadays a very 
popular method for moving--black-hole evolution.  
It consists in using coordinates that allow the punctures (locations of the 
singularities) to move through the grid, but do not allow any evolution at the puncture 
point itself (i.e., the lapse is forced to go to zero at the puncture, though not the 
shift vector, hence the “frozen” puncture can be advected through the domain). The 
conditions that have so far proven successful are modifications to the so-called 1+log 
slicing and Gamma-driver shift conditions. 
In practice, such gauges take care that the punctures are never located at a grid 
point, so that actually no infinity is present on the grid. This method has proven to be 
stable, convergent, and successful. A few such gauge options are available, with 
parameters allowed to vary in determined ranges (but no fine tuning is necessary). 
This mechanism works because it implements an effective excision (“excision without 
excision”). It has been shown that in the coordinates implied by the employed gauges 
the singularity is actually always outside the numerical domain.



• Efforts	to	simulate	BHs	started	in	the	1970s,	but	li:le	progress	un=l	2005	

• Pretorius,	PRL	95,	121101	(2005),	gr-qc/0507014	
• generalized	harmonic	coordinates;	excision	

• Campanelli,	et	al.,	PRL	96,	111101	(2006),	gr-qc/0511048  
and  
Baker,	et	al.,	PRL	96,	111102	(2006),	gr-qc/0511103  
(simultaneous,	independent	discovery)	

• moving	“punctures”	across	the	grid	

• in	the	“puncture”	method	the	solu=on	is	factored	into	an	analy=cal	part,	

which	contains	the	singularity,	and	a	numerically	constructed	part,	which	is	

then	singularity	free	

• appropriate	gauge	condi=ons	make	sure	that	the	loca=on	of	the	the	singularity	

is	never	on	a	grid	point	and	that	gradients	near	it	are	not	too	large	

• Effec=ve	resolu=on	is	very	poor	near	the	singularity	loca=ons,	but	this	is	fine	

because	these	regions	are	inside	horizons

A phase transition in numerical simulations



Carpet: a mesh-refinement driver
 Carpet (www.carpetcode.org) is a driver mainly developed by E. 
Schnetter [CQG 21, 1465 (2004)], which has removed the limitation of 
using uniform 3D grids.

Carpet follows a (simplified) Berger-Oliger  
[J. Comput. Phys. 53, 484 (1984)] approach to 
mesh refinement, that is:

• refined subdomains consist of a set of cuboid (= 
rectangular parallelepiped) grids

• refined subdomains have boundaries aligned 
with the grid lines

• the refinement ratio between refinement levels 
is constant

While the refined meshes are not automatically moving on the grid, they can be 
activated and deactivated during the evolution, obtaining a progressive fixed mesh 
refinement or even a moving-grid mesh refinement. 

http://www.carpetcode.org/


When the spacetime is not vacuum



⇥µTµ⇥ = 0
⇥µJµ = 0

Jµ � �uµ

The evolution equations of the matter are given by the 
conservation of the baryon number and energy-momentum:

plus an Equation of State P=P(ρ,ε) 

Simple EoSs are: 
the ideal-fluid EoS: 

the polytropic EoS: P = kργ

P = (� � 1)⇤⇥

When the spacetime is not vacuum

(microphysics input).



Fluids and shocks



Fluids and shocks 



Fluids 
 A fluid is described as a set of fluid elements, or of volumes of 
fluid with the following properties: 

•  they are much smaller than the typical size of the  
macroscopic system they are part of 

ê 

they can be considered point-like particles for all physical 
and mathematical purposes 
 

•  their linear dimensions are much larger than the collision 
mean free path of the particles (molecules, atoms, nuclei, 
electrons, nucleons,…) they contain 

ê 

such fluid elements can be considered representative of the 
mean quantities of the particles they contain 



Fluids and shocks 
 The hydrodynamics equations allow for the formation of 

 arbitrarily large and arbitrarily localized  

spatial variations  

of the hydrodynamical variables,  

which are mathematically treated as discontinuities and 
are often referred to as shocks. 

(inviscid) Burger’s equation 

€ 

∂u
∂t

+ u
∂u
∂x

= 0



Finite-volume methods 
and 

conservative systems 



Finite-difference  
vs  

finite-volume  
methods 

• Finite-difference methods are numerical methods that 
approximate the solutions to differential equations using finite 
difference equations to approximate derivatives 

• Finite-volume methods are based on subdividing the spatial 
domain into intervals (“finite volumes” or grid cells) and keeping 
track of an approximation to the integral: 

€ 

u i
n =

1
volume of celli

u(x, tn )dx
cell i

∫ =
1
Δx

u(x, tn )dx
xi−1/2

xi+1/2

∫ 2/12/1 −+ −=Δ ii xxx

over each of these cells. 



this discrete sum will change only due to the fluxes at the 
domain boundaries x=a and x=b. So, for example, the total 
mass is preserved, or at least varies correctly, provided that 
the boundary conditions are properly imposed. 

Advantages of finite-volume methods 

Therefore, the integral of u over the entire interval [a,b] 

€ 

u(x, tn )dx
a

b

∫ ≈ u i
nΔx

i=1

N

∑

At each time step, the update of the 
grid cells are obtained using 
(approximations to) the flux through 
the cell boundaries. 



If the homogeneous partial differential equation 

 

is written in the form 

 

it is said to be in conservative form. 

Conservative form 
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In conservative systems, knowledge of the state vector u at 
one point in spacetime allows to determine the flux f (and so 
the evolution) for each state variable. 
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is not valid in the classical sense for solutions containing 
shocks (discontinuities). 

However, its integral form 

holds. 

The solution to the integral form of the equation is called 
weak solution. 

0)u(fu =∂+∂ xt

Weak solutions 
The partial differential equation 



Conservative form: theorems 

In conclusion, in the presence of shocks, only converging 
conservative numerical methods converge to the correct 
weak solution  of the problem (which is what we want). 

References: 

•  Lax Wendroff, Comm.Pure.Appl.Math., 13, p.217 

•  Hou LeFloch, Math. Of Comp., 62, p. 497 

Lax Wendroff: 

If a method in conservative form converges, then it converges to the weak solution of the 
conservation laws 

 

Hou LeFloch: 

If a method in non-conservative form converges, then in the presence of a shock wave it 
converges to the wrong solution. 
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suggests that we should study numerical methods in the form: 
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Finite-volume numerical methods 
The integral form of the equation: 0)u(fu =∂+∂ xt

namely: 

or, in more compact form, 

Different numerical schemes differ in the prescription for computing the flux 
function F. 



Discontinuities and numerical schemes 



The problem of discretisation 

In general, difficulties arise when a 
Cauchy problem described by a set 
of  continuous PDEs is solved in a 
discretised form: the numerical 
solution is, at best, piecewise 
constant. 

The nonlinear properties of the 
hydrodynamical equations for 
compressible fluids generically 
produce, in a finite time, nonlinear 
waves with discontinuities (i.e. 
shocks) even from smooth initial 
data.  



Since the occurrence of discontinuities is a fundamental property of the 
hydrodynamical equations, any numerical scheme must be able to handle 
them in a satisfactory way. 

Possible solutions to the discontinuity problem: 
 

v  1st order accurate schemes 
§  generally fine, but very inaccurate across discontinuities (excessive 
 
 diffusion); e.g. Lax-Friedrichs method 

Discontinuities and numerical schemes 

€ 

 u i
n +1 =

1
2

(u i+1
n + u i-1

n ) − Δt
2Δx

Fi+1 − Fi−1( )



v  2nd order accurate schemes 
§  more accurate, but generally introduce oscillations across 
   discontinuities and are dispersive even on smooth data 
 
  (especially for steep gradients), causing waves to move with a  
 
  wrong group velocity (e.g. Lax-Wendroff method) 

Discontinuities and numerical schemes 



v 2nd order accurate schemes with artificial viscosity 
§  mimic Nature, but problem-dependent and inaccurate for  
 
   ultrarelativistic flows 
 
 
 

v  Godunov methods 
§  discontinuities are not eliminated, rather they are exploited 
§  based on the solution of Riemann problems 
§  approximately second-order schemes can be derived  
§  state of the art in relativistic hydrodynamics 

Discontinuities and numerical schemes 



The Riemann problem 



Riemann problem 

Definition: in general, for a hyperbolic system of 
equations, a Riemann problem is an initial-value 
problem with initial condition given by: 

⎩
⎨
⎧

>

<
=

0    xif     
0    xif     

)0,(
R

L

U
U

xU

where UL and UR are two constant vectors representing 
the left and right state. 

For hydrodynamics, a (physical) Riemann problem is the 
evolution of a fluid initially composed of two states with 
different and constant values of velocity, pressure and density. 



Riemann problem 
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Godunov’s idea 



Godunov’s idea 
Core idea:  

a piecewise-constant description of hydrodynamical quantities 
will produce a collection of local Riemann problems, whose 
solution can be found exactly (if one wishes).  

This is an example of how research in basic physics can boost computational methods. 



Godunov’s idea: notes 
•  There are powerful methods to solve Riemann problems 
either exactly or approximately. 
 

•  Piecewise constant reconstruction leads naturally to Riemann 
problems (but gives only a first-order accurate method). 
 

•  The solution at time tn+1 can be constructed by piecing 
together the Riemann solutions, provided that the time step is 
short enough (CFL condition) that the waves from two adjacent  
Riemann problems have not yet started to interact. 



High Resolution Shock Capturing methods 

•  Godunov’s method with piecewise constant reconstruction is only 
first order. 

•  HRSC methods are a compromise between these two options: they 
are second order where the solution is smooth, but they are only first 
order near discontinuities, because here the monotonicity 
preservation is more important. 

•  Higher order is achieved by improved reconstruction methods. 



Total Variation 
A useful measure of the oscillations present in the numerical 
solution is provided by the notion of total variation: 

€ 

TV(Q) ≡ |Qi −
i=−∞

∞

∑ Qi−1 |

For this to be a meaningful measure, Q must become constant at 
infinity. Usually Q has compact support, anyway. 
 

A sufficient condition that ensures that a method does not 
introduce oscillations is that its total variation does not increase: 

)(TV)(TV 1 nn QQ ≤+



Total Variation 
Methods that satisfy the condition 

 

 

are called Total Variation Diminishing (TVD) methods  

(even if Total Variation Non Increasing would be more correct). 

It is demonstrated (see Toro) that TVD methods cannot be 
extended to higher than second order. One must then renounce to 
strict TVD and allow for 

)()(TV)(TV 1 knn xOQQ Δ+≤+

The resulting methods are called Essentially-Non-Oscillatory (ENO) 
methods. 

)(TV)(TV 1 nn QQ ≤+



Reconstruction 

“Riemann problems” 

In HRSC methods, higher order of  
accuracy is reached with a better 
representation of the solution: that 
is with a ”reconstruction” of the 
solution. 

Such a reconstruction can be 
made with different algorithms. 

The values of the reconstructed 
function  on the cell boundaries 
are then used as the initial data for 
the Riemann problems at the cell 
boundaries. 



TVD Reconstruction 
TVD reconstruction methods consist in approximating the 
solution with a piecewise linear function.  

Different TVD reconstruction methods differ in the way in 
which the slope (linear approximation) is selected. The 
selected slope is a combination of the upwind Sup, downwind 
Sdown and central Sc slopes. 

€ 

Sup =
xi − xi−1
Δx

Sdown =
xi+1 − xi
Δx

Sc =
xi+1 − xi−1
2Δx



TVD Reconstruction: examples 
•  minmod (by P. Roe): if Sup and Sdown have the same sign, selects the 
slope with the minimum modulus; otherwise (i.e. at extrema) selects 
zero: 
 
 
 

 
It is the simplest and most diffusive slopelimiter. 

•  superbee (by P. Roe): selects the maximum modulus between 
minmod(Sup,2Sdown) and minmod(2Sup,Sdown). 
It sharpens discontinuities, but steepens and “squares” also smooth 
profiles. 

•  monotonized central-difference (by B. van Leer):  
selects minmod(2Sup, 2Sdown, Sc). 
It reduces to the central slope away from discontinuities, so avoiding 
the problems of superbee. It is a good default limiter for a large class 
of problems. 
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ENO Reconstruction 

As said earlier, ENO methods are not TVD, but 

€ 

TV(Qn+1) ≤ TV(Qn ) +O(Δxk+1)
their total variation is bound to grow only slowly.  

ENO methods are more expensive than TVD ones. 

 

There are numerous variants of ENO methods. The basic idea 
is to choose a stencil including s+t<k+1 cells (s to he left of the 
point and t to its right), so that the smoothest reconstruction is 
achieved.  

cfr. e.g.: Shu C.W., in T.J. Barth, H. Deconinck (eds.),  
              High-Order Methods for Computational Physics, Springer (1999) 



ENO Reconstruction 

The smoothness is measured in terms of the Newton divided 
differences: 

€ 

n[xi−1,xi] ≡
ui − ui−1
xi − xi−1

€ 

n[xi−s,xi+ t ] ≡
u[xi−s+1,xi+ t ] − u[xi−s,xi+ t−1]

xi+ t − xi−s

After the stencil giving the minimum Newton divided 
differences is found, a k-order polynomial interpolation gives 
the reconstructed value on the i-th cell interface. 

The property: 

illustrates how minimising the Newton divided differences 
provides the smoothest reconstruction.  
€ 

n[xi−s,xi+ t ] =
u(t+s)(ξ)
(t + s)!

where n(t+s) is the (t+s)-th derivative 



Piecewise Parabolic Method (PPM) 

•  PPM is a rather more complex, composite procedure to achieve, 
theoretically, third order accuracy. 
•  In practice it is not much above second order, but it is more accurate. 
•  It has several adjustable parameters; which add to its complexity 
•  The basic idea is to construct in each cell an interpolating parabola, such 
that its integral average coincides with the known solution and that no new 
extrema appear in the interpolated function. 

 Colella, Woodward, J. Comput. Phys, 54, 174 (1984) 

Monotonicity-Preserving (MP5) scheme�

The MP5 scheme is based on a fifth-order reconstruction combined with 
a flattening procedure designed to avoid the creation of artificial 
extrema in the function to be reconstructed.  

Suresh & Huynh, J. Comput. Phys., 136, 83 (1997) 

Mignone et al., J. Comput. Phys., 229, 5896 (2010)�



Summary of reconstruction methods 
•  Reconstruction methods serve the purpose of increasing the order of 
accuracy of the scheme 

•  They reconstruct the data on the cell boundaries, starting from the data 
at the cell centres 

•  They set the initial conditions for the local Riemann problems 

•  Different type of reconstruction methods are available: TVD, ENO, … 

•  Some famous examples: 

•  slope limiters: linear but reduce the order to 1 at extrema: 

•  minmod: the most diffusive 

•  superbee: squares waves 

•  MC: combines the good properties of the above two methods 

•  ENO: any order (in theory) 

•  PPM: expensive, but accurate 



Summary about Riemann solvers 

•  Riemann solvers are essential to building numerical methods that well 
describe discontinuities 

•  exact Riemann solvers are computationally (prohibitively) costly 
•  several approximate Riemann solvers have been proposed, e.g. 

 
•  HLLE: simple, robust, computationally relatively inexpensive, 

rather dissipative 
•  Roe: more computationally expensive, less dissipative; problems at 

sonic points 
•  Marquina: like Roe, with improvement at sonic points 



References 
•  R. J. Leveque, Finite Volume Methods for Hyperbolic Problems, 

Cambridge University Press 
 

•  E. F. Toro, Riemann Solvers and Numerical Methods for Fluid 
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Systems of PDEs in conservative form

•We have seen the importance of using the conservative 
form of the general-relativistic hydrodynamics equations and  
High-Resolution Shock-Capturing (HRSC) 
methods to solve them  

•The PDEs of general-relativistic hydrodynamics using natural 
hydrodynamical quantities like rest-mass density, internal 
energy pressure, velocities, are not in a flux-conservative 
form.



Systems of PDEs in conservative form
To hard-wire the conservative nature of the hydrodynamical 
equations, the so-called ”primitive variables”  are replaced by 
the “conserved variables”:

Enthalpy:
Lorentz factor : W This is called the Valencia formulation 

of general-relativistic hydrodynamics 
(Banyuls Font Ibáñez Martí Miralles, Ap. J., 476,221)



High Resolution Shock Capturing schemes

In summary HRSC schemes consist in  

•conversion of primitive variables to conservative variables
•reconstruction on cell boundaries
•computation of fluxes through solutions of Riemann 
problems

•time update
•conversion of conservative variables to primitive variables



Conversion 
from conservative to primitive variables 

•The evolved variables are the conserved variables, but in 
order to compute the fluxes, the source terms (and to have 
physical insight) it is necessary to transform back the updated 
result to the primitive variables.

•The conversion from primitive to conservative is given 
analytically, but converting in the other direction is not 
possible in closed form. A standard procedure for the 
conversion consists in solving numerically the equation:

p� p̄[�(U,p), ⇥(U,p)]

where p is the pressure to be found and    is the pressure 
expressed through the EoS, in terms of the updated 
conserved variables and the pressure p itself.

p̄



Conversion 
from conservative to primitive variables 

This is done by inverting the equations

in order to express    and    in terms of the conserved 
variables and of the pressure p:

D = �W

Sj = �hW 2vj

⇥ = �hW 2 � �W � p

� =
D

⇥ + p + D

⇤
(⇥ + p + D)2 � S2

⇤ = D�1

�
⇤

(⇥ + p + D)2 � S2 � p
⇥ + p + D⇤

(⇥ + p + D)2 � S2
�D

⇥

S � �ijSiSjwhere



Artificial atmosphere
•In compact-object simulations there are usually parts of the 

numerical domain where vacuum should be present.
•However, in the vacuum limit the hydrodynamics equations break 

down, because the speed of sound tends to the speed of light and 
the Riemann solvers fail. C2P also tends to fail for very low densities.

•To avoid this problem, it is customary to introduce a tenuous 
atmosphere, i.e. a low-density, low-pressure region surrounding the 
compact objects.

•The artificial atmosphere is treated as a perfect fluid and its density is 
set to be several orders of magnitude smaller than the maximum 
density of the stars. Variations are possible.

•The treatment of the atmosphere is one of the most delicate parts 
of codes implementing HRSC methods. However, if the control of 
the atmosphere and the setting of its parameters are carried out 
with care, the atmosphere usually has negligible influence on the 
evolution of the compact objects.



A High-Resolution Shock-Capturing scheme

Matter evolution
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the divergence-free condition:

and the equations for the evolution of the magnetic field:

�⇥
�Fµ⇥ = 0

⇤ ·
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= 0

For a perfect fluid with infinite conductivity 
(ideal MHD approximation) these become:

∗
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=

1

2
ϵ
µνσρ

Fσρ

For magnetic fields
The Maxwell equations written covariantly using the Farady 
electromagnetic tensor are 



Tµ⇥ = (� + �⇥ + b2)uµu⇥ +
�

p +
1
2
b2

⇥
gµ⇥ � bµb⇥

where  

ρ is the rest-mass density  

ε is the specific internal energy 

u is the four-velocity 

p is the gas pressure 

vi is the Eulerian three-velocity of the fluid (Valencia formulation) 

W the Lorentz factor 

b the four-vector of the magnetic field 

Bi the three-vector of the magnetic field measured by an Eulerian observer

For magnetic fields



The fundamental equations

We solve 
the following 
equations:

The complete set of equations is solved with the codes: 

rµ
⇤Fµ⌫

= 0, (Maxwell eqs.: induction, zero div.)

•neutrino and photon radiation transport
•nuclear-reaction networks
•multifluids and solids
•high-order, high-accuracy numerical methods 

Additionally, 
we would 
like to solve:

and we would like it fast enough to allow parameter-space exploration!

+1 + 3 + 1



To know more on numerical relativity  
and applications

Introduction to 3+1 Numerical Relativity, Miguel Alcubierre, 
Oxford University Press (2008)

Numerical Relativity, Thomas Baumgarte and Stuart Shapiro, 
Cambridge University Press (2010)

Relativistic Hydrodynamics, Luciano Rezzolla and Olindo Zanotti, 
Oxford University Press (2013)

Numerical Relativity, Masaru Shibata, World Scientific (2016)


