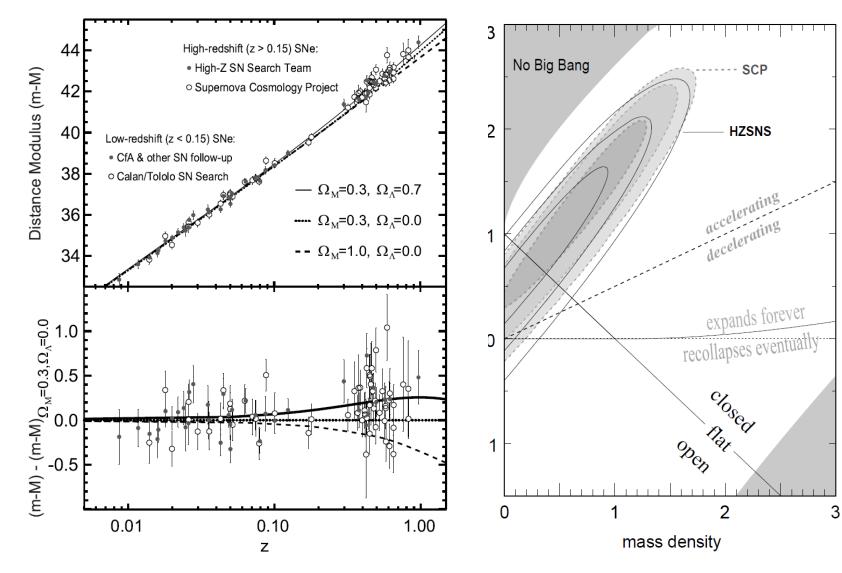
Can We See Large-scale Structure by Gravitational Waves?

T. Futamase

Dept. of Astrophysics and Atmospheric Science Maskawa Institute of Science and Culture Kyoto Sangyo University 13 th July 2027 Summer Mini-Workshop of GW @台湾師範大学

- Lensing effect in m-z relation of SN
- Neutrino and structure formation
- How to calculate the lensing effect
- Constraint on neutrino mass
- How about GW?

Introduction

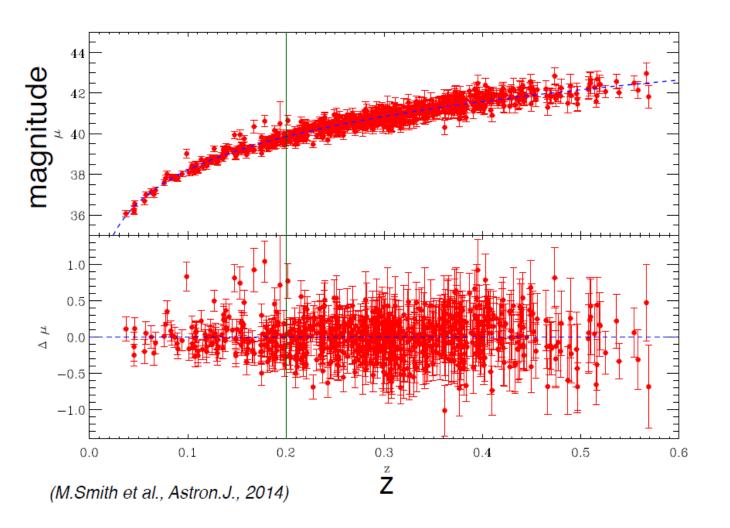


Accelerating Universe

Dark Energy Modified Gravity

S. Perlmutter &B.P.Schmidt

Observed dispersion



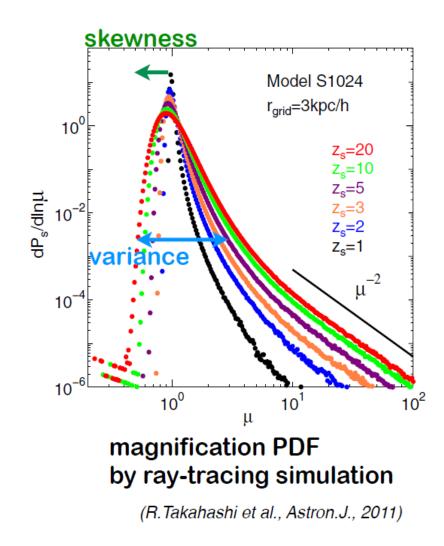
Various origin of the dispersion

- Observation
 Fitting of Light curve
- Intrinsic dispersion $\sigma_{\rm int}\approx 0.12\,{\rm mag}$
- Weak lensing by LSS

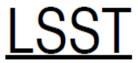
Small but z-dependence Non-Gaussian

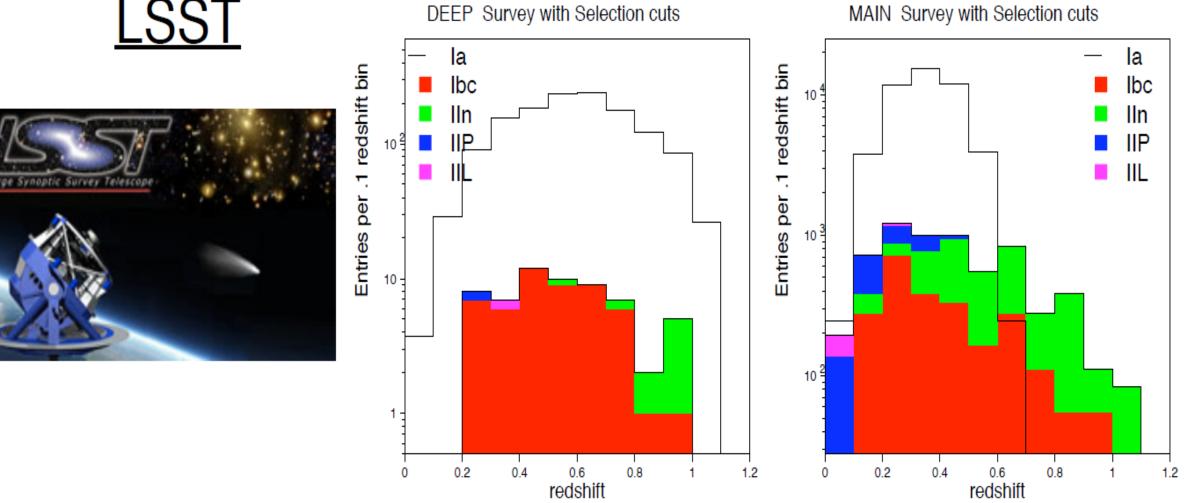
The lensing effect

The lensing effect by local scale inhomogeneity is now regarded as a noise but maybe useful information if we have a definite theoretical relation between the lensing effect and local inhomogeneity



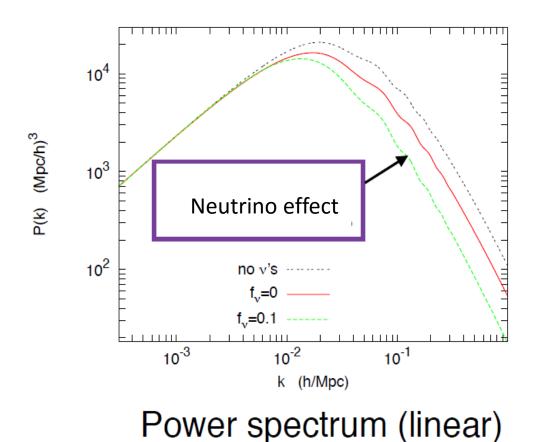
Can we say anything about cosmology using the lensing effect in m-z relation?





Large scale structure with massive neutrino

free-streaming length: $k_{\rm fs}(z) \simeq \frac{0.677}{(1+z)^{1/2}} \left(\frac{m_{\nu}}{1 \text{ eV}}\right) (\Omega_{m0}h^2)^{1/2} \text{ Mpc}^{-1}$

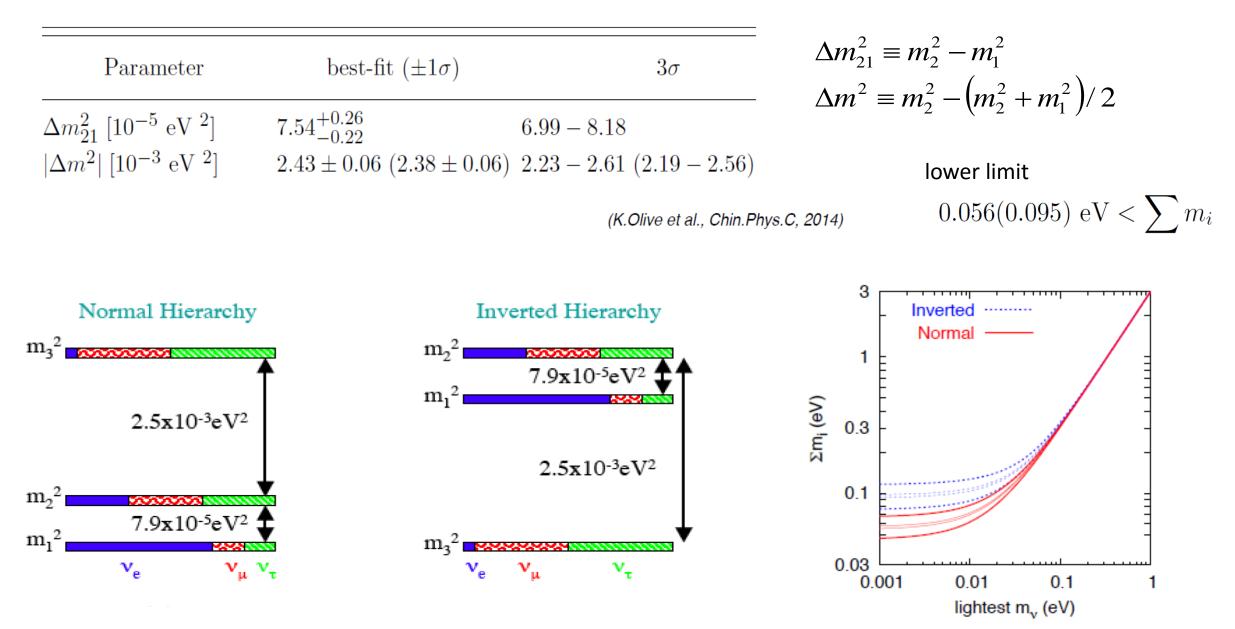


$$f_{\nu} \equiv \frac{\Omega_{\nu}}{\Omega_{\rm m}} = 0.05 \left(\frac{N_{\nu}^{\rm nr} m_{\nu}}{0.658 \text{ eV}}\right) \left(\frac{0.14}{\Omega_{\rm m} h^2}\right).$$

For $k \gg k_{\rm fs}(z)$

$$\left|\frac{\Delta P}{P}\right| \approx 2f_{\nu} \left[1 + \frac{3\ln(D_{z=4})}{5}\right] \approx 8f_{\nu}.$$

Neutrino oscillation



Present limit

tritium beta-decay experiments... (V.N.Aseev et al., Phys.Rev.D, 2011)

 $m_{\bar{\nu}_e} < 2.05 \text{ eV}$

CMB + BAO(バリオン音響振動)

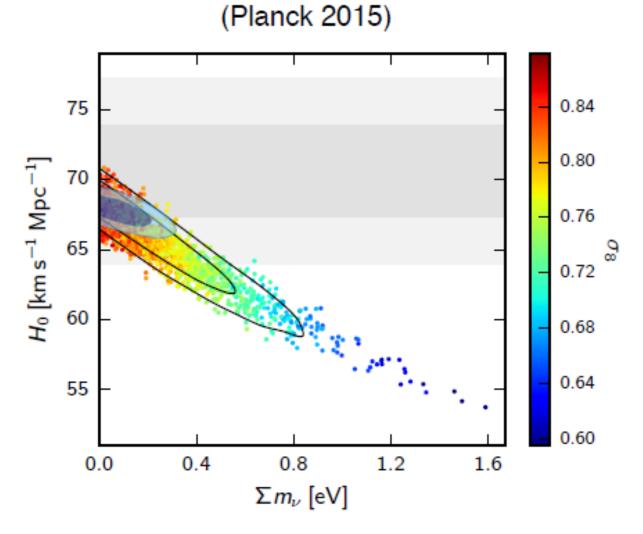
$$\sum m_{\nu} < 0.23 \text{ eV}$$
 (95% CL)

(Planck Collaboration, A&A, 2014)

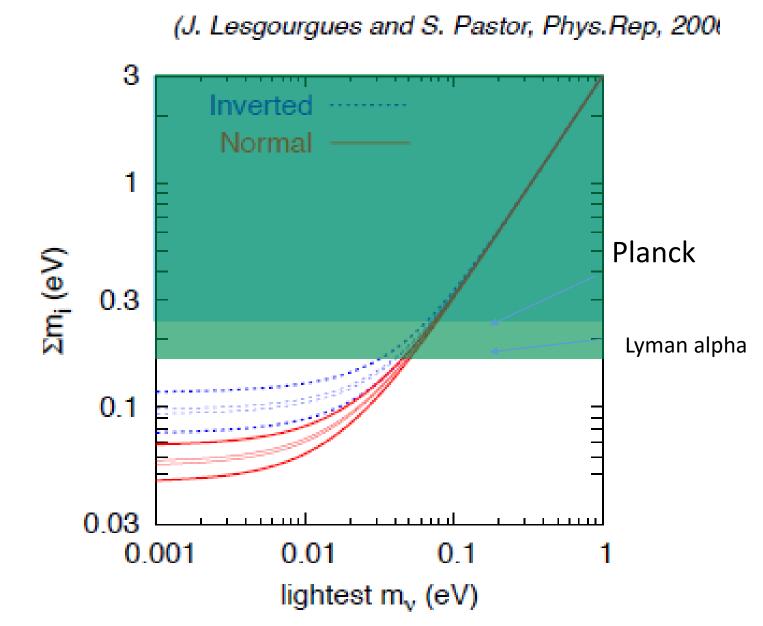
Ly-α forest + galaxy clustering(e.g. BAO) + CMB +SNe

$$\sum m_{
u} < 0.17 \; {
m eV}$$
 (95% CL)

(U. Seljak, A. Slosar, and P. McDonald, JCAP, 2006)



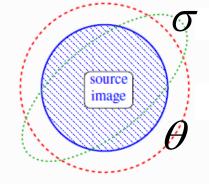
Normal or Inverted hierarchy?



Light(GW) Propagation in an inhomogeneous Universe

Evolution of expansion and shear along the null geodesic obey the following equations as far as geometric approximation is valid

$$\frac{d}{d\lambda}\theta = -R_{\alpha\beta}k^{\alpha}k^{\beta} - \frac{1}{2}\theta^2 - 2\sigma^2,$$
$$\frac{d}{d\lambda}\sigma_{ab} = -C_{\alpha\mu\beta\nu}e^{\alpha}_{\ a}k^{\mu}e^{\beta}_{\ b}k^{\nu} - \theta\sigma_{ab},$$



on a realistic inhomogeneous universe

$$ds^{2} = a^{2}(\eta) \Big[-(1+2\Phi) d\eta^{2} + (1-2\Phi) (dr^{2} + r^{2}d\Omega^{2}) \Big]$$
$$\Delta \Phi = 4\pi G a^{2} \bar{\rho}_{m} \delta_{m} = \frac{3}{2} \Omega_{m} \mathcal{H}^{2} \delta_{m},$$

Realistic means $\delta_m \gg 1$, but $\Phi \ll 1$

Einstein Equation

Assuming k=0 totally flat universe

$$\delta_d(z_s, \mathbf{n}) \equiv \frac{\delta d_L^{FRW}(z_s, \mathbf{n})}{d_L^{FRW}(z_s)} = -\int_0^{\chi_s} d\chi \frac{(\chi_s - \chi)\chi}{\chi_s} \left(4\pi Ga^2 \delta \rho_m + \sigma^2\right) + \text{ Doppler term}$$

Shear O(Φ^2)

We neglect shear term and Doppler term by sample selection. Namely, we select SNs satisfying z>0.1 and not very close to any galaxies in order To avoid strong lensing events

$$\delta_d(z_s,\mathbf{n}) = -\frac{3H_0^2 \Omega_{m,0}}{2} \int_0^{\chi_s} d\chi \frac{(\chi_s - \chi)\chi}{\chi_s} (1 + z(\chi)) \delta_m(z(\chi),\mathbf{n})$$

For the application to the m-z relation

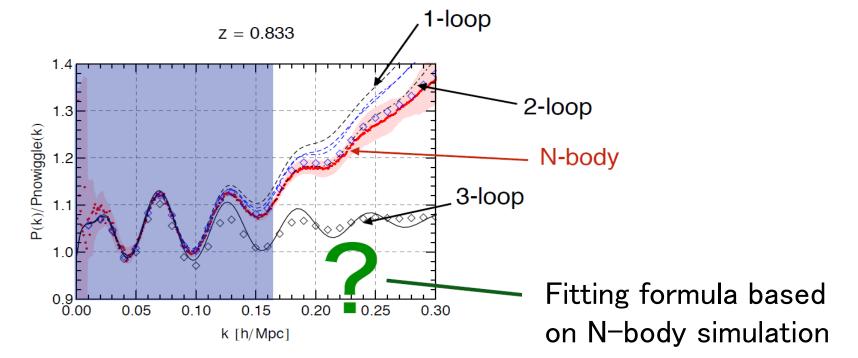
$$\delta m(z_s, \mathbf{n}) = \frac{5}{\ln 10} \ln \left(1 + \delta_d(z_s, \mathbf{n}) \right) \approx \frac{5}{\ln 10} \delta_d(z_s, \mathbf{n})$$

Dispersion on m-z relation

$$\sigma_{\text{lens}}^2(z_s) \equiv \left\langle \delta m(z_s, \mathbf{n})^2 \right\rangle \cong \left(\frac{15H_0^2 \Omega_{m,0}}{2\ln 10} \right)^2 \int_0^{\chi_s} d\chi \left[\frac{(\chi_s - \chi)\chi}{\chi_s} \right]^2 \int_0^{k_{\text{max}}} \frac{kdk}{2\pi} P_m(z, k)$$

$k_{max} \sim 10$ for Galaxy scale

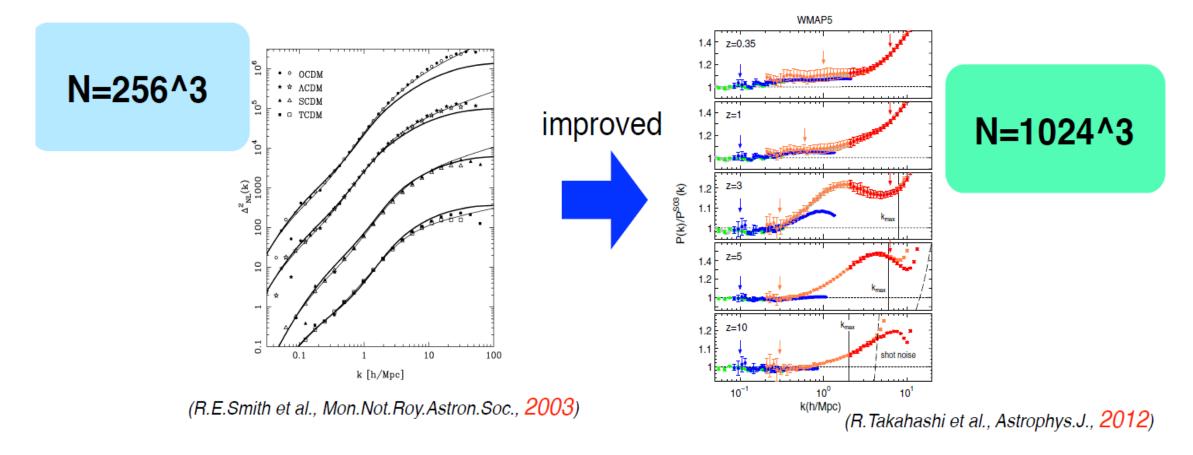
We need highly non-linear Pawer Spectrum



⁽Blas, D., Garny, M., & Konstandin, T., JCAP, 2014)

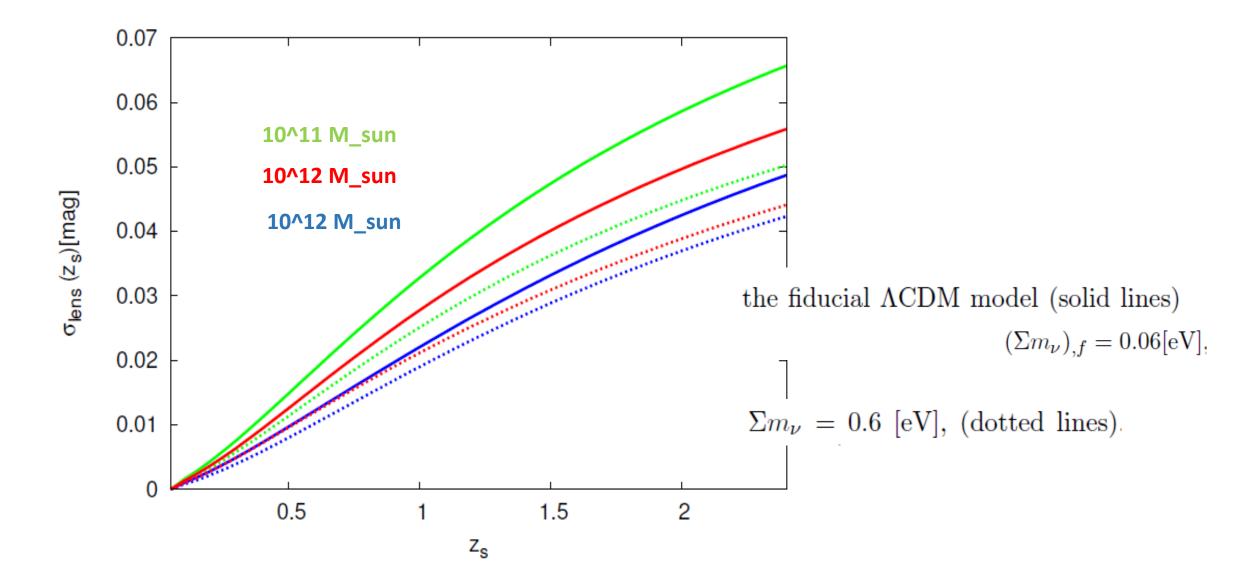
We use an improved fitting formula for nonlinear Power Spectrum

Power spectrum based on halo model with parameters fitted by N-body simulation

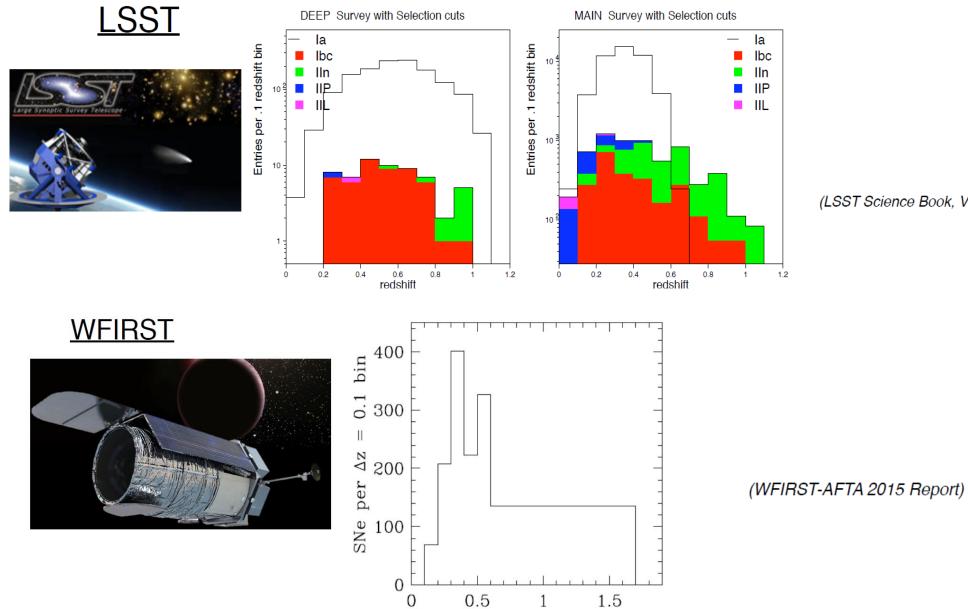


we use an improved fitting formula, proposed by Bird et al. (2012) for taking account of the effects of massive neutrino for $k < 7[h \text{Mpc}^{-1}]$ at $z \leq 3$.

Lensing dispersion



Future Projects



(LSST Science Book, Version 2.0, 2009)

Expected number of SNIa in each redshift bin

Survey	WFIRST	LSST(main)
z=0.2	$0.6 imes 10^2$	$4 imes 10^3$
0.3	$2.0 imes 10^2$	1×10^4
0.4	$4.0 imes 10^2$	$2 imes 10^4$
0.5	2.2×10^2	1×10^4
0.6	$3.2 imes 10^2$	4×10^3
0.7	$1.4 imes 10^2$	2×10^2
0.8 - 1.7	1.4×10^2 (for each bin)	

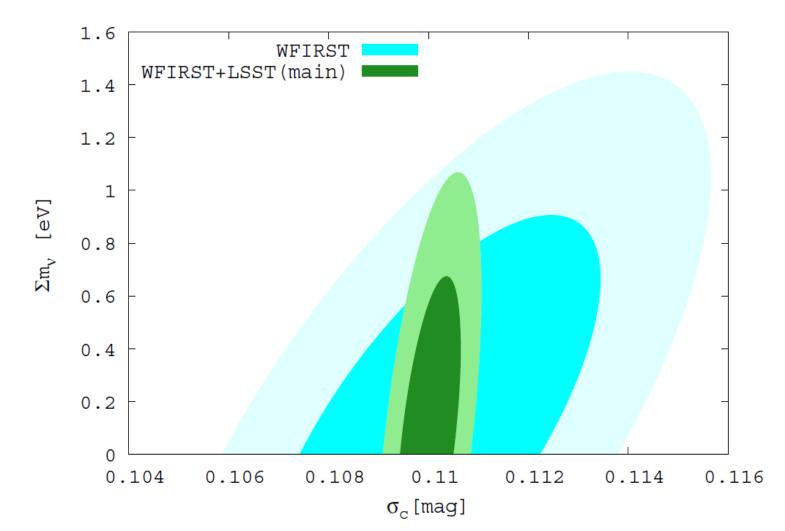
Doppler effect is dominant for z < 0.1

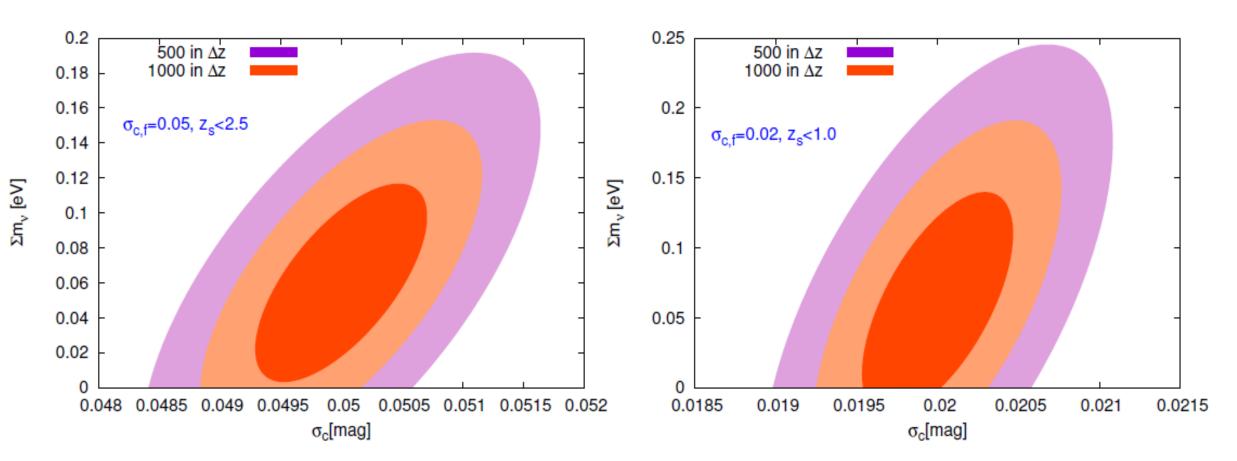
(L. Hui, & P. B. Greene, Phys. Rev. D, 2006)

Result

2 free parameters
$$\sum m_{\nu}, \sigma_c \qquad \sigma^2 = \sigma_{\text{lens}}^2(z) + \sigma_c^2$$

Other parameters such as $\Omega_m, n_s, \tau...$ are all fixed (WMAP 5years)





High-z data with half sigma_c

With very small sigma_c GW from NSNS/NSBH binaries

More information in the data

The above result is obtained by only using minimum information in the expected observation

PDF of m-z/d-z relation

Non-Gaussianity in d-z relation comes from the non-Gaussianity of the density distribution which contains more cosmological information

Shear contribution

 $\sigma_{11} \propto (\partial_1^2 - \partial_2^2) \phi, \ \sigma_{12} \propto \partial_1 \partial_2 \phi \implies \sigma^2 \approx \frac{\phi^2}{\rho^4}$ Important in small scales $\delta_d(z_S) = -\int_0^{z_S} dz \, W(z_S, z) \Big(4\pi G a^2 \overline{\rho}_m \delta_m + \sigma^2 \Big)$ $\implies \langle \delta_d(z) \rangle \propto - \int dz' W(z,z') \langle \sigma^2 \rangle \neq 0 \quad \text{Systematic deviation from the standard distance}$

Can we see a giant void?

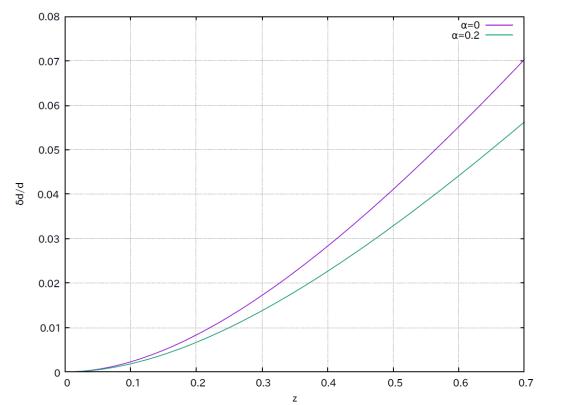
Giant voids (δ_g ~- 0.2) with size ~400 Mpc/h at z~0.2 are found in galaxy survey N-body+baryon simulation indicates galaxy bias ~2, thus δ_m ~ - 0.1

If the density of void is α times the background density

$$\rho_{\text{void}} = \alpha \ \overline{\rho}_m \Longrightarrow \delta_m = \frac{\delta \rho_m}{\overline{\rho}_m} = -(1 - \alpha)$$

Then our formula gives

$$\delta_d(z_s, \mathbf{n}) = \frac{3H_0^2 \Omega_{m,0}}{2} (1 - \alpha) \int_0^{\chi_s} d\chi \frac{(\chi_s - \chi)\chi}{\chi_s} (1 + z(\chi))$$
$$= 3(1 - \alpha) \left[\frac{\sqrt{1 + z_s} + 1}{\sqrt{1 + z_s} - 1} \ln(1 + z_s) - 4 \right]$$



Summery and future study

- The lensing dispersion in m-z relation by LSS can be calculated semianalytically and gives a constraint on neutrino mass using the expected data by LSST and WFIRST.
- High z observation of the order of 500 for each redshift bin up to z^2 will improve the constraint of the order of 0.1 eV if the intrinsic ambiguity of the absolute magnitude is reduced in half
- D-z relation derived from GW observation from is in principle ideal method for this purpose since the intrinsic ambiguity of the distance is very small
- Using Non-Gaussianity property and tomographic analysis may improve the constraint and give us more information on cosmology