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Self introduction:
• Member of the KAGRA & LIGO Scientific collaboration.

• But this talk is from my personal view ….

• Ph.D thesis on post-Newtonian equations of motion for 
relativisitic compact binaries. [Supervisor: Toshifumi
Futamase@Tohoku Univ., 2002]

• Work as a postdoc at Albert-Einstein Institute at Potsdam, 
Univ. Wisconsin-Milwaukee, & Tohoku Univ.

• Current research field: data analysis on GWs from pulsars
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INTRODUCTION



Data analysis
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Observed GW

Want to extract physical information



Data analysis
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Observed GW

Want to extract physical information
Compute correlation with theoretical expectation
Find the model that maximizes the correlation

Theoretical expectations

compare
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Luminosity distance, sky location     ,masses, spin 
angular momentums of the black holes of the binary

!
n

What we can learn
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PNA, Numerical relativity, Single star/BH Perturbation
LIGO Scientific        

Collaboration & Virgo 

collaboration  (2016/02, 

PRL)

BH Perturbation

Numerical 
relativityPost-Newtonian
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PNA, Numerical relativity, Single star/BH Perturbation
LIGO Scientific        

Collaboration & Virgo 

collaboration  (2016/02, 

PRL)

BH Perturbation

Numerical 
relativityPost-Newtonian

Combined all three
 SEOBNRv4
 IMRPhenomP



If we are “perfect computers”.
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gravity

velocity

General relativity



Need Post-Newtonian approximation (PNA)
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gravity

velocity

GR is 
required

Newtonian

approximation is good.

Post-

Newtonian 

approximation 

is good.

special relativity



Post-Newtonian approximation (PNA)
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gravity

velocity

GR is 
required

Newtonian

approximation is good.

Post-

Newtonian 

approximation 

is good.

special relativity

post-Minkowskian

approximation is good.



Post-Minkowskian approximation (PMA)
• Expansion parameters of PMA:

velocity: v/c 

gravity: GM/(c2R) = 𝛌

• It is in essence a weak field approximation.

• Expand the Einstein equations and equations of conservation 
law of matter’s stress energy tensor.

and metric:

# v, M, R: typical velocity, mass, and  length of the system)
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Post-Newtonian approximation (PNA)

• Expansion parameters of PNA:

velocity: v/c

gravity: GM/(c2R)

• Assume it is approximately Newtonian bounded system:

• Expand the Einstein equations and equations of conservation 
law of matter’s stress energy tensor in ε.

• Solve the equations order by order.

# v, M, R: typical velocity, mass, and  length of the system)
15



Post-Newtonian approximation (PNA)

• Expand the Einstein equations and equations of 
conservation law of matter’s stress energy tensor.

• Solve the equations order by order. Then the metric 
would be obtained as a polynomial functional series in ε.
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Post-Newtonian approximation (PNA)

• Equations of motion for a two point-particle system 
would be obtained as

• εn correction to the lowest order term is called (n/2) PN 
correction.  

• Since terms multiplied by ε to the power of odd-integers 
are  time non-reversible, they represent energy 
dissipation.  The radiation reaction term first appears at 
2.5PN order [cf. v3 term in EM case.].

• But there appears a radiation reaction force at the 4 PN 
order in EOM due to a tail effect.
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Post-Newtonian approximation (PNA)

• Equations of motion for a two point-particle system is 
obtained

• There is a conservative Energy when radiation reaction 
effects are neglected.

• Similarly we have GW luminosity

18



Post-Newtonian approximation (PNA)

• While it is true that L0 corresponds to the 2.5 PN radiation 
reaction effect in EOM, we say L1 the 1 PN correction in 
GW luminosity  to the leading order term (L0).

or  
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Other useful expansions

• extreme mass ratio limit

– small stellar object orbiting around a super-massive 
black hole [eLISA target].

– self-force approach [e.g., E. Poisson, Liv. Rev. Rel.]

– the lowest order EOM is a geodesic equation. 

• multipole expansion of a stellar object

– good approximation for compact objects like neutron 
stars & black holes.

– when tidal effects can be neglected (good in the 
inspiralling phase), mass and spin are enough. 

20
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Mass-Spin approximation

Rough argument: ( m, vs, R: mass, spinning velocity, and radius of a star, L: orbital 

separation)

1. Tidal gravity force: m R /L3

Tidally induced quadrupole: Q ~ (tidal gravity)/(self gravity) times m R2 ~ m3 (R/L)3. 

Quadrupole orbit coupling force:  F ~ mQ/L4 ~ (m/L)7 = 5 PN  

(cf. (m/L)2 for Newtonian Force. For a compact star R ~ m).

2. Spin induced quadrupole: Q ~ (mRv)2/m ~ m3 v2.  

Quadrupole orbit coupling force: F ~ (m/L)4 v2 = 2PN times (rotational velocity)2.

See e.g. for Bildsten & Cutler (1992), Blanchet’s 2007 Liv. Rev. review.

m

L

R
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NEWTONIAN WAVEFORM CALCULATION



Let’s compute GWs from a point particle binary in an inpiraling phase

23

Want to draw the following curve.



Let’s compute GWs from a point particle binary
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Binary with orbital radius a , 
angular  frequency ωo

Compute quadrupole
moment.  Let μ denote 
reduced mass

Take temporal derivatives 
twice, compute transverse-
traceless part.
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Let’s compute GWs from a point particle binary
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Let’s compute GWs from a point particle binary

How can we compute time series h(t) 
(scalar) from tensor hTT

ij(t) ?



Detector output time series
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Linear perturbation solution to the Einstein equations

Detector arm vectors p & q, Antenna pattern function F+、Fx

Polarization tensors
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Detector output time series
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Linear perturbation solution to the Einstein equations

Detector arm vectors p & q, Antenna pattern function F+、Fx

Polarization tensors
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Let’s compute GWs from a point particle binary
Compute GW energy 
using the quadrupole
formula. Mc is a chirp 
mass

Lgw is from the orbital 
energy.

Get a differential 
equation for ωo

Solve it, find the phase 
evolution equation.



Let’s compute GWs from a point particle binary
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Let‘s compute GWs from a point particle binary
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Use stationary phase approximation. Note  that the integrand oscillates so rapidly that 
it amounts to zero for any frequencies other than 



Useful quantities

33

Time to coalescence from fgw Hz 

Frequency as a function of the orbital radius
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recapitulate: making waveform
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Derive the far zone metric.
It depends on source multipole 
moments (SMM).

Derive PN EOM and evaluate the 
SMM.

Derive orbital energy directly or 
from PN EOM.

Derive GW luminosity from the far 
zone metricand solve balance 
equation to derive GW phase 
evolution.

Combine all, we obtain far zone 
field (what an observer measures) 
in terms of the physical quantities 
of the system.



How accurately do we need to know the waveform?
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To have large cross-correlation, we do not want to miss 
one cycle among 104 cycles  in the detector band 
(NS/NS). Assume v ~ 0.3c then (v/c)n ~ 10-4 or n = 7.6. 
Hence, 3 ~ 4 PN corrections in the waveform would be 
necessary.  



Number of cycles from each PN correction 
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Integrated from 10 Hz to ISCO: 1/(63/2 𝛑(m1+m2)) 
The table is from the Blanchet’s LRR review. 
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POST-NEWTONIAN EQUATIONS OF MOTION
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Waveform Templates and Equations of Motion

Need to know Phase evolution

EOM  orbital evolution  GW Phase evolution

•More accurate the EOM is, better the quality of waveform 

templates becomes and we get good signal to noise ratio.

•For GW detection and measurements, 3.5 (~ 4 PN) EOM 

may be enough for stellar mass binary.
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EOM and wave propagation problem.

• Both EOM and wave propagation from source to observer must be computed to 
construct waveform.

- Blanchet-Damour-Iyer (BDI) et al or Will-Wiseman (WW) 

succeeded in deriving higher order waveform. 

- This talk is on EOM.

EOM

Propagation
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Two approaches to PNA EOM.

• Two approaches to find PNA binary dynamics in insipiralling phase.

1. ADS Hamiltonian in ADMTT gauge

2. Equations of motion in harmonic gauge

 Hamiltonian

 EOM
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ADM formalism
• E.g., Damour-Jarawnoski-Schafer (2001) or  references in Blanchet’s LRR review.

• Lagrangian of non-spinning particles interacting through gravity.

• Na is lapse and shift, 𝛑ij are conjugate momenta of the metric.

• Hamiltonian from the Lagrangian

• Then solving the constraint equation using post-Newtonian approximation assuming 

asymptotically Minkowskian coordinates,  we obtain the reduce Hamiltonian that 

governs the orbital dynamics. 
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Why need to derive EOM in GR using PNA???

Is not the EOM just a geodesic equation????
Yes for a test particle. A test particle follows a 

geodesic of background space-time.

But for an equal/comparable mass binary, binary 
components follow a “geodesic”, even if it is the 
case,  of what space-time?? Is there any 
“background space-time”? 
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Why need to derive EOM in GR using PNA???

Linear order metric g = gfather + gmother

Leading order geodesic equation 
af = - 𝜞[g]u[g]u[g] = - 𝜞[gm]u[gm]u[gm] : maybe ok?  

Higher order g = gfather + gmother + gchidren + ggrand-chidren + …

Higher order geodesic equation ???? 

af = - 𝜞[g]u[g]u[g] = - (𝜞uu)[gm+gc+ggc+ …]: this 
seems wrong both mathematically and theoretically.  



Why need to derive EOM in GR using PNA???

Higher order geodesic equation ???? 

af = - 𝜞[g]u[g]u[g] = - (𝜞uu)[gm+gc+ggc+ …].
This is unsatisfactory.  

• gm+ gc + ggc + … is NOT a solution of the Einstein equations!
• It is not symmetric to am. 
• We would double count if we sum up mmam + mfaf. 
• If we use a Dirac delta functional to represent a point 

particle, then parts of gc+ggc + … diverge on the point 
particle.


