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POST-NEWTONIAN EQUATIONS OF MOTION
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3.5 PN EOM (monopole terms)

3.5PN

3PN

2.5PN

2PN

1PN
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Post-Newtonian equations of motion 
for relativistic compact binaries 

• Plan: Concentrate on (my contributions to) 3.5 PN EOM.

References:
• Itoh, Futamase &  Asada, Phys. Rev.D62:064002-1-12(2000).
• Itoh, Futamase &  Asada, Phys. Rev.D63:064038-1-21 (2001).
• Itoh & Futamase, Phys. Rev. D68:121501-1-5(R)(2003).
• Itoh, Phys. Rev.D69:064018-1-43 (2004).
• Itoh, Class. and Quant. Grav. 21 S529-S534 (2004). 
• Futamase & Itoh, Living Review in Relativity 10:2 1-81 (2007). 
• Itoh, Phys. Rev.D80:124003-1-17 (2009).  

For other approaches, see e.g. L. Blanchet,  Living Review in Relativity 9, 4 (2016),
& Maggiore’s text book. 



6

Key ideas in our formalism

1. Hyperbolic formulation of Post-Newtonian approximation (PNA)

- Anderson & Decanio (1975)

2. Point particle limit

- Strong field point particle limit (Futamase,1987)

3. Surface integral approach

- Similar to Einstein, Infeld & Hoffmann (1938).
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Key ideas 1. PNA

•Post-Newtonian approximation.

Newtonian gravitational bound system :  

Balance between centrifugal force and 

gravitational force

orbv~
m~

L
~

Introduce scaled mass m and velocity v, PN Expansion parameter    , Newtonian 

dynamical time    [Nothing to do with the proper time!!].    
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Key ideas 1. PNA (cont’d)
1. Expanding metric (and stress energy tensor) in ε formally. 

Use lower order EOM if necessary

2. Expanding Einstein Equations in ε. 

Solve those for gn’s up to required order in ε as functional of m, v, … 

3.      Stress energy conservation law gives EOM. 

Iteration
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Key ideas 2. Point particle limit

Why point particle limit?

1. To make equations of motion more tractable (reduce number of 

degrees of freedom)

2. Gravitational wave data analysis may not need higher order multipoles 

other than spin (and quadrupole).  Smaller the number of parameters 

(mass, spins, …) to be searched for is, easier the data analysis and 

lesser the computational burden become. 
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One possible approach: Dirac delta

• One can use Dirac delta to achieve point particle limit.

• Have to deal with divergent integrals.

• Up to the 2.5 PN order (and 3.5 PN order), it was sufficient to 
use the Hadamard Partie Finie regularization.

• At the 3PN and 4PN order, we need the dimensional 
regularization.
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Key ideas 2. Point particle limit (cont’d)
Strong field point particle limit: 

• “Regular” point particle limit.

• Can make a star have strong internal self-gravity (while keeping inter-body gravity weak).

• Nicely fit into post-Newtonian approximation. 

1. We would like to make a star have strong internal gravity

2. while keeping inter-star gravity weak and PNA valid.

3. As a consequence, we have a point particle in the ε-zero limit.

Scaling law for radius of star: (Strong field point particle limit)
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Key ideas 3. Surface integral approach
• (Newtonian) Force by Volume integral 

• By surface integral (using Poisson eq.) 

Need  ρ and φ inside the star.

Need φ close but outside the star.

Field Momentum flux 

going through BA
Gravitational Force on 

the star A

BA (or star A) shrinks

Star



(3)Surface Integral Approach: (Einstein, Infeld & Hoffmann, YI, Futamase & Asada)

(4) Effective Field Theoretical approach
13

Ways to EOM
(1)Volume integral Approach: (Pati & Will)

Assume the properties of the density. 

(2) Regularized geodesics or, regularized action (Blanchet & Faye)

Physically interesting implications.

Avoid the internal problem up to 

the order where φ depends on it.

Explicit demonstration of 

irrelevance of the internal structure.
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Newtonian computations.
mass

dipole

momentum

Velocity Momentum relation

From Field eq.
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Field equations

1. Gauge choice

2. Relxed Einstein Equations (REE)

3. How to solve REE.

• Boundary conditions 

• How to deal with PNA break down

• Field around stars: operational multipole moments.

• Super(-duper-tuper-…)- potentials.

• PNA iteration
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Field Equation

•Deviation field h.

•Harmonic gauge

•Relaxed Einstein Equations (REE)

Anderson & Decanio (1975).

•Formal solution to REE.

REE source terms

flat light cone Homogeneous term

Stress energy 

tensor of matter 

plus gravity

Conservation laws

Wave operator 

residual.

flat wave operator
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Boundary condition:
•Homogeneous solution:

•No incoming radiation 

condition at Minkowskian

past null infinity.

or

Other possibilities:

• Use “radiative coordinates” to incorporate system monopole effect on null characteristic (MPM of 

Blanchet, Damour, Iyer et al.).

-- No difference in EOM up to 3.5 PN order inclusively.

• Use initial value formalism rather than going to fictitious past null (BigBang). 

-- Assume binary is immersed in (environmental/cosmological) stochastic GWs hij (not htt, hti). 

(Statistical initial condition by Schutz 1980.)  

-- Not deeply investigated. 



Let’s solve the Relaxed Einstein Equations iteratively.
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Outside of the material source, the integrand 
consists of at most O(h2) (or O(G2)). 

We can solve REE iteratively.
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PNA break-down, Far zone field, & WWP-DIRE
Divergent integrals in formal slow motion expansion series

C

N

τ=constant. 

Forward in time the 
integrand from C to N 
using slow motion 
expansion (Taylor 
expansion), and evaluate 
the integral on N.

c N
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PNA break-down, Far zone field, & WWP-DIRE

- Multipolar-Post-Minkowskian formalism (MPM)

– Blanchet, Damour, Iyer et al. (e.g. Blanchet 2016 review)

– PMA in radiative coordinates for far zone

– PNA for near zone

– Matching between two.  

- Direct Integration of Relaxed Einstein Equations (DIRE)

– Will & Wiseman (1996)

– same coordinates in far and near zone (harmonic).

Divergent integrals in formal slow motion expansion series
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Will-Wiseman-Pati’s DIRE

C

Field point P:(τ,x)

N

F

N

F

 )(),( QtQPG LL

)(Qh

τ=constant.
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Will-Wiseman-Pati’s DIRE cont’d

F

u

x

STF expansion

General formula for far zone contribution to near zone field

PNA

appear at 4 PN EOM as 

PN tail.
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Near zone field and slow motion expansion
•Slow motion expansion

•Then split it into Body zone contribution + N/B contribution

B1

B2

N/B

N
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Body zone field and multipole expansion

Operational multipoles

Integrands include 

gravitational stress 

energy tensor 

Self-gravitating star.

Body zone contribution : Multipole expansion
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moments of stars
Conservation law gives the  

velocity-momentum relation

Define the moments of the star A 

in its Fermi normal coordinates.  

Namely, spin. Choose some 

particular spin condition.

We want a “spherical” object in 

its rest frame when neglecting 

higher order multipoles.

Relativistic correction due to the 
gravitational energy.

vi

BA

BA
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Momentum Velocity relation and a representative 
pint of the star

Need to care for which point in the star is representative.

Specify the dipole moment freely and determine which point 

inside the star represents the star in the point particle limit.

P is not proportional to v.
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N/B field and super-potentials

g: (Super-)potential of (non-compact) source f.

•There’s no need to worry about homogeneous solutions.

•Analytic closed form expressions of all the necessary super-potentials are available up to 2.5 PN 

order inclusively and 3.5 PN order.

• At 3 PN order, we could not find all. We instead find the potentials in the neighborhood of the body 

zone, which are what we need to evaluate surface integrals to derive EOM, or change the order of 

integrations: compute surface integral first and then compute remaining Poisson integral.

B1

B2

N/B



28

Equations of motion

1. Conservation law

2. Surface integral approach

3. Mass-Energy relation

4. Momentum-velocity relation

5. General form of equations of motion
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Conservation law and surface integral approach

Surface integral form for evolution equation of   4-momentum as a result of energy-

momentum conservation:

Conservation law:

Separate Theta part and chi part
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Mass Energy relation

Mass is defined as a integration constant, and independent of epsilon and time.

Integrate this equation functionally as

NB: 1) when epsilon is zero, there’s no motion, no companion star. So This mass 

is defined on the rest frame of the star. 

2) if body zone were extended to spatial infinity, this mass would become  

ADM mass of the star A (since epsilon  zero, there’s no companion star).   
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3.5 PN evolution equation for energy.

3.5PN

3PN

2PN

1PN

We can integrate this!

Tensor density of 

weitht -2, not -1.
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3.5 PN mass-energy relation.

3.5PN

3PN

1PN

2PN

• We need 2.5 PN field to derive 3.5 PN mass-energy relation.

HPF: Hadamard Partie Finie.
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General form of equations of motion

The general form of the equation of motion (Itoh, Futamase & Asada (2000))

Field Momentum flux 

going through BA
Gravitational Force on 

the star A

BA and Star A shrink

Star
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3.5 PN EOM (monopole terms)

3.5PN

3PN

2.5PN

2PN

1PN

This EOM is Lorentz-invariant (perturbation  sense), 

admits conserved energy (when excluding rad. reac.), 

and has no undetermined coeff. We also checked 3.5 

PN harmonic condition.
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Leading order SO, SS, QO coupling forces and spin precessions.

See Tagoshi, Ohashi & Owen (2001) for 1PN SO force.
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3.5 PN monopole EOM in a quasi-circular orbit in 
the Center of Mass Frame.
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3 PN monopole Conserved Energy in a quasi-circular orbit in CMF

c.f. Blanchet and Faye (2000)
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Obtained physically the same results  

(3)Surface Integral Approach: (Einstein, Infeld & Hoffmann, YI, Futamase & Asada)

(2) Regularized geodesics or, regularized action (Blanchet & Faye,….)

Having physically the same results between these two means 
that a  comparable mass binary follows a geodesic of “space-
time” described by (dimensionally) regularized metric.
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self-force approach implication  

To the linear order in the mass ratio, the metric perturbation 
about the background metric g obeys, in the harmonic 
condition                     ,

Denote the inhomogeneous solution by         , the 
homogeneous solution                                actually gives the 
self-force. In other words, the lighter particle follows 
a geodesic of “space-time” augmented by the metric                    .  

Detweiler & Whiting  2002
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WAVEFORM
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Post-Newtonian approximation break-down

• The integrands of the formal solution of the relaxed Einstein 
equations are non-compact support.

• By slow motion expansion, 

• Hence whatever small ε is, the integrals diverge. This is an 
indication that PN expansion is an asymptotic expansion.  

42



How to deal with PNA break-down
• Two methods have been proposed: DIRE & MPM

• Split the integral region into two zones: near zone and far zone 
(wave zone) 

43𝛌GW
far zone (wave zone)near zone

r



Direct Integration of Relaxed Einstein equations 
(DIRE) approach (Will-Wiseman-Pati)

• Split the integral region into two: near zone and far zone.

44

C

Field point P:(τ,x)

N

F

N

F

 )(),( QtQPG LL

)(Qh

τ=constant.



DIRE approach

• Introduce the retarded time :

• The near zone contribution to the far zone field is evaluated 
using the source multipole moments. These source multipole 
moments are functionals of mass, velocity, spins …. 

45



DIRE approach

• Far zone contribution is evaluated by directly computing the 
integrals.

• Decompose the integrand into symmetric-trace-free tensor:

46



DIRE approach
• The Integrands is a sums of terms that consists of the source 

multipole moments times some function independent of the 
system physical quantities both of which depend on u. Then 
integrate by parts, increasing the u-derivative of the source 
multipole moments up to the necessary PN order.       

with               . The coefficients Dq
B,L(z) are evaluated using the 

Legendre Polynomials.  47



Multipolar Post-Minkowskian approach (MPM)

• There is no need to use the same coordinates for the far zone 
and the near zone.

• In the far zone, use the tortoise coordinates (“radiative 
coordinates” deviated little from the original harmonic ones) 
with the mass MADM of the system.  This way, the Coulomb 
logarithmic phase shift can naturally be incorporated.

• Solve the Einstein equations iteratively.   

48



MPM solution in the wave zone (T,R)

At the leading order:

The general solutions to these equations:

Adding functions  (again solutions of  homogenous wave equations) to satisfy 
the gauge condition.

In general, the solution depends on 6 SFT multipole moments  {IL  , JL , WL , XL , 
YL , ZL}  which can be combined into two gauge independent moments {ML,SL} 

STF moments



At the next-to-leading order:
Because h(w,1) is divergent at the origin, one multiplies regularization factor RB 

(B: complex number and its real part is positive), solve the wave equations 
and then find its analytic continuation to B = 0.   

Likewise, at  a general order n:  

Inhomogeneous solutions: 

Again we have gauge functions.

MPM solution in the wave zone

50



In the near zone: 

Gauge functions:

Then at the overlapping zone, one matches the two solutions and finds the 
relationship between the source multipole moments defined in the near zone 
and the multipole moments {ML  , SL}, and obtains the field at an observer.  

The {UL,VL} are functionals of the source canonical multipole moments {ML,SL} 

MPM solution in the near zone

51



GW flux at infinity
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Once the orbital motion of the binary is known,  one can compute the GW 
flux F at infinity. This flux should be equal to the dissipation of the binary 
orbital energy obtained by the conservative part of the EOM or directly 
from the Hamiltonian.

From the expression of E in terms of the orbital frequency,  we obtain the 
evolution equation of the orbital frequency, thereby, GW phase evolution.  



summary:
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No spin Spin-Linear Spin-Squared Tidal

Conservative
dynamics

4PN 3.5PN 3PN 7PN

Energy flux at 
infinity

3.5PN 4PN 2PN 6PN

Radiation
Reaction force

4.5PN 4PN 4.5PN 6PN

Waveform 
Phase (*)

3.5PN 4PN 2PN 6PN

Waveform 
Amplitude(*)

3PN 2PN 2PN 6PN

Black Hole 
Horizon Energy 
Flux (+)

5PN 3.5PN 4PN -

(*): quasi-circular orbit only.
(+): with respect to the leading order luminosity.

As of 2015 April.

A. Buonnano & B. S. Sathyaprakash, arxiv:1410.7832
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EFFECTIVE ONE-BODY APPROACH
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PNA, Numerical relativity, Single star/BH Perturbation
LIGO Scientific        

Collaboration & Virgo 

collaboration  (2016/02, 

PRL)

BH Perturbation

Numerical 
relativityPost-Newtonian

Combined all three
 SEOBNRv4
 IMRPhenomP



EOB approach

Find a correspondence between 

• Real problem where two-body with m1 and m2 orbiting 
around each other 

• effective one-body problem where a test particle with mass µ = 
m1 m2/(m1+m2) moving in space-time endowed with an 
“effective metric”.

56



EOB approach

• Obtain a relative Hamiltonian of two body problem with 
masses m1 and m2 up to some PN order. E.g., at the Newtonian 
order [µ = m1 m2/(m1+m2)] :  

• Compute the action variables for the real problem.

57



EOB approach

• Assume an effective metric. For non-spinning particle,  assume 
a spherically symmetric space-time:

with expansions with free parameters ai(𝜈) & di(𝜈) (but at the 
lowest order it is assumed to be the Schwarzschild metric.)

• 𝜈 = m1m2/(m1+m2)2

58



• Assume one-to-one correspondence between an effective 
Hamiltonian (energy) and the real problem Hamiltonian (energy), 
specifically in the form, 

with free parameters 𝛼i(𝜈).
• Using the effective metric and effective energy, compute the action 

variables in the effective problem Ik
eff. 

• Determine  the parameters ai, di,𝛼i from Ik
eff = Ik

real.
• Note that the coordinates used can be (and indeed are) different in 

the two problems. The correspondence is made using a canonical 
transformation (which depends on another set of parameters).

• Given 𝛼i(𝜈)., we obtain the effective Hamiltonian that governs EOB 
problem.

EOB approach

59



• But actually at the 3 PN order, one needs an additional term in 
the effective problem (hence it is not geodesic anymore):

• In any case, one could obtain an effective Hamiltonian.

• Furthermore, one uses Padé approximants so that the effective 
metric smoothly approaches the Schwarzschild one in the test 
particle limit (𝜈 0).

EOB approach

60



Padé-approximant

• Padé–approximant of (k,m)-type where k+m = n for a series f(x) 
= a0 + a1x + a2x2 + … + anxn (a0 is non zero) is

where Nk and Dm are polynomials of order k and m, respectively 
and the Taylor expansion of Nk /Dm coincides with the f(x) up to 
the order n.  
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• But actually at the 3 PN order, one needs an additional term in 
the effective problem:

• In any case, one could obtain an effective Hamiltonian.

• Furthermore, one uses Pade approximants so that the effective 
metric smoothly approaches the Schwarzschild one in the test 
particle limit.

• The effective Hamiltonian governs the conservative part of the 
orbital motion. One augments it with radiation reaction forces 
derived from PN approach and self-force approach.

EOB approach
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• Assuming quasi-circular motion governed by the effective 
Hamiltonian + radiation reaction force, one obtains waveform. 

• Again, one introduces three sets of parameters.  

– Just before the plunge, one finds it better to introduce in the 
waveform a non-quasi-circular (NQC) correction term that depends 
on a set of parameters.

– Also one introduces another set of parameters (in the 
amplitude/phase at each l,m mode and the time of matching) with 
which we can match the EOB waveform to the numerical relativity 
waveform for a set of parameters (mass ratio) for which NR 
simulations are performed. 

• The resulting waveform is called EOBNR waveform.

EOB approach
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• The resulting waveform is for non-spinning particles.

• Because the precession time scale is much longer than the 
orbital time-scale, one constructs a waveform for precessing
binary by (1) introducing post-Newtonian aligned spin waveform 
to the EOB formalism and (2) assuming that precession 
waveform is equivalent to the non-precession waveform 
instantaneously. 

• Finally match the so-obtained inspiral-plunge waveform to the 
ring-down waveform.  This is called SEOBNR waveform. 

EOB approach

64



• One could also incorporate tidal effects by assuming the effective 
metric depends on the tidal Love numbers [Bernuzzi et al., PRL 
114, 161103 2015]. The resulting waveform is TEOBResum.

EOB approach

65


